
Starkiller: A Static Type Inferencer
and Compiler for Python

Michael Salib
msalib@alum.mit.edu

Dynamic Languages Group
Computer Science & Artificial Intelligance Lab

Massachusetts Institute of Technology

May 11, 2004

This talk in 60 seconds

I.Motivation
II.Why Python is slow
III.Starkiller type inference
IV.Starkiller compilation
V.Results and Challenges
VI.Questions

I. Motivation

Reason 38 for destroying the sun:

The sun reduces our dependance on foreign
oil. It is unpatriotic.

The end of the world

 Software sucks. A lot.
 too buggy, too dangerous
 too expensive and slow to build
 too pervasive
 internet makes it all worse
 bad software kills people
 it is going to get worse before it gets better

Saving the world: Python

 Use a High level language
 fewer lines of code needed
 fewer lines mean

 fewer bugs
 less time/money to build

 make the worst brain damage impossible
 no buffer overflows in Python programs

 But Python cannot take over the world
 no continuations
 no macro system out of the box
 too slow

Python is slow

 I've done everything with Python
 High speed network servers
 Databases
 Statistical natural language processing
 Scientific computing
 Signal and Image processing
 AI type job schedulers

 And its been slow

Python is not slow!

 You're a heretic!
 Most apps spend all their time waiting

 on a socket (network servers)
 on a slow human (GUIs)
 on Oracle (databases)
 on disk IO (most things)

 Fast libraries written in C/C++
 Numeric!
 Die infidel, die!

Yes, Python is slow

 I've used all those lines myself
 I even believe them
 They're relevant most of the time
 But they don't change the fact that Python

is slow
 Sometimes, straightforward Python code is

much clearer and easier to write than fight-
ing with Numeric

 For the 15% of apps where speed matters,
pure Python can't do the job alone

 I don't want to use crappy C/C++

II. Why Python is slow

Reason 347 for destroying the sun:

It warms our enemies.

Those who do not learn from
history...

 p2c was a python to C compiler emerged
circa 1998

 It generated (lots of) C code that made the
same calls into the Python runtime that the
VM would

 But it compiled down to machine code!
 So it must be super fast!
 Super = 10-15%
 A lesson: the VM is not a performance bot-

tleneck (yet)

Where should I jump now?

 Quick! Inline the function f in the code be-
low!

 A lesson: dynamic binding seemed like
such a good idea at the time...

if random() > 0.5:
def f(x): return x + 1

else:
def f(x): return x – 1

print map(f, range(4096))

Trapped in a box

 Numbers are heap allocated objects refer-
enced by pointer; they are neither special
nor unique snowflakes

 New coercion rules make life even worse:
integer overflow silently coerces to longs

 A lesson: boxing replaces fast register ALU
ops with multiple dereferences of distant
(read: not in cache) memory

Our old (performance killing)
friend...

 Dynamic dispatch has a long history of ruin-
ing performance in OOP languages

 cf virtual/nonvirtual methods in C++, sealing
in Dylan

 By postponing until runtime decisions about
which bit of code is executed at a polymor-
phic call site, we lose the ability to optimize
well

 You cannot inline code when you don't
know what it is

More Pythonic “fun”

 Multiple inheritance
 First class functions with lexical scoping
 No declarations or manifest types
 getattr and setattr functions allow anyone to

get/set any attribute at runtime
 Dynamic inheritance relations
 Dynamic class membership

x = table()
x.__class__ = chair
assert isinstance(x, chair)

Other languages suck

 Java sucks beyond all measure and com-
prehension

 C++ and Java suffer the same performace
problems as Python when it comes to dy-
namic dispatch

 Dynamic dispatch prevents the compiler
from using all the cool optimizations like in-
lining

 Inlining is the canary in the coal mine: if you
can't inline, you probably can't do loop
hoisting, strength reduction, etc.

III. Starkiller type inference

Reason 7 for destroying the sun:

The sun causes global warming.

Making Python fast

 Speed == laziness: stop doing work
 Work refers to all the runtime choice points

the Python VM has to perform
 whenever the VM has to find what code to exe-

cute next
 whenever the VM has to check operands to en-

sure they are of the correct type
 We can eliminate many of those checks us-

ing static analysis, specifically type infer-
ence

Finding the right pigeon hole

 Compiling to C++ is not enough (cf p2c)
 Need static type inference to eliminate dy-

namic binding and dispatch
 Starkiller compliments rather than replaces

CPython
 Covers the entire language except eval,

exec, and dynamic module loading
 Not all run time choice points can be elim-

inted, but many can

Starkiller type inference

 Based on Ole Agesen's Cartesian Product
Algorithm (see his Stanford thesis)

 Represent Python programs as dataflow
networks

 Node correspond to expressions and have
a set of concrete types those expressions
can achieve at runtime

 Constraints connect nodes together and en-
force a subset relation between them

 Types flow along constraints

Ex-girlfriends say I'm insensitive

 Starkiller's type inference algorithm is flow-
insensitive

 It has no notion of time
 Code like x = 3; doSomething(x); x = 4.3;

doSomething(x) will suffer loss of precision
 I don't care. I'm insensitive, remember?

Type inference in action

 A simple example

x = 3
y = x
z = y
z = 4.3

Functions and Templates

 Parametric polymorphism (same function
with different argument types) reduces pre-
cision

 We regain precision by taking cartesian
product of argument type list and analyzing
one template for each monomorphic argu-
ment list

 Given polymorhic calls max(1, 2) and max
(3.3, 4.9), we analyze templates for (int,
int), (float, int), (int, float), and (float, float)

Functions and Definitions

 A Python function defintion creates a first
class object at runtime

 Function objects can capture variables de-
fined in their lexical parent(s)

 Starkiller models function definition using a
function definition node that has constraints
from all default args and expressions the
function closes over

 The definition node takes the cartesian
product and generates monomorphic func-
tion types

Objects and Classes

 Class definition works just like function def-
inition!

 Instances work in the same way as classes!
 Calling a class triggers the creation of an

instance definition node
 ID nodes are the repository for the poly-

morphic state of an instance
 They generate monomorphic instance state

types and send them into the world

Foreign Code

 Type inference cannot see into an exten-
sion module

 We could perform type inference on
C/C++/Fortran...therein lies doom

 Starkiller gives extension writers a minilan-
guage for declaring the type inference
properties of their extensions

 Most extensions are real simple: int(x) al-
ways returns an integer

Foreigner code, living among us,
plotting against us!

 Some extensions are unspeakably compli-
cated

 they might call arbitrary functions
 they might mutate their arguments or some ob -

ject that is part of global state
 The external type description language is

really Python
 External type descriptions run as extensions of

the Starkiller type inferencer
 You can use them to raise the dead

IV. Starkiller compilation

Reason 204 for destroying the sun:

DARPA say sun bad. Must kill or lose funding.

Compilation preliminaries

 Functions/classes/modules are represented
by C++ objects that can be passed around

 Each function/method template gets com-
piled as a separate monomorphic block of
code

 Since modules are executed exactly once,
their attributes are all static

 Conservative GC thanks to Boehm
 No relation between Python and C++ object

models

Data model

 Numbers are automatically unboxed
 Everything else is heap allocated and

passed by reference
 Container datatypes are built out of STL

componants and are type specific

Closures

 Normally, variables are stack allocated
 But, for variables referenced by inner func-

tions, Starkiller allocates them specially
from a heap allocated MiniStackFrame

 An MST is common space that the original
function and all of its inner functions can
safely refer to, even after the original func-
tion returns

 The MST persists as long as it remains ref-
erenced thanks to the magic of GC

Fast Polymorphic dispatch

 We cannot eliminate all of it
 Usually implemented with an indirect

branch through a class pointer
 very, very slow on modern hardware

 For the common case where there are few
possibilites, we exploit the lack of eval to
speed things up

 Use gcc's computed-goto extension plus
minimal hashing to jump directly into the
code without a branch

Dynamic attributes

 getattr is easy to optimize:
 use perfect hashing (plus extra if setattr)

 setattr contaminates objects
 any attribute can be of the type assigned in the

setattr call

Exceptions

 All Starkiller defined functions/methods can
throw InternalRuntimeError

 A Python try/except block is translated into
a C++ try/catch block that dispatches on
the exception thrown

 Python library code based on C++ compo-
nants translate native C++ exceptions into
their Python equivalent

Generators

 Generators become functions that return
instances of a generator object

 Variables in the generator body become at-
tributes of the object

 yield statements get replaced by code that
saves the label corresponding to the next
statement to be executed and then returns

 On each invocation of the generator object,
control jumps to the label last saved

V. Results and Challenges

Reason 172 for destroying the sun:

The pale yellow face mocks us, keeps us from
hearing the machine; it burns, it burns, we
hatesss it!

Where are we now?

 Starkiller type inferencer is mostly imple-
mented

 almost all of the hard parts are done
 most of the unfinished work is boring detail

 The compiler is in the very early stages
 a prototype works on simple code that doesn't

push it too hard
 no runtime system, no builtin types except int

and float

Suckling on the government teat

 Who owns Starkiller? MIT!
 Who paid for Starkiller's development?
 You did! Pat yourselves on the back!
 Thank you taxpayers
 “So, that means that you are a whore, MIT

is your pimp, and DARPA is the john who
likes to play rough. . .Hey Mike, is there
anything you won't do for money?”

 A secret: don't tell DARPA I'm not building
the sun destroying weapon they think I am

Justify your existance

 Very preliminary benchmark with the proto-
type compiler and type inferencer

 All benchmarks are lies
 This one is pathological
 Call the factorial and fibonacci functions
 In a loop. Over and Over.
 CPython completion time: 18:37
 Starkiller completion time: 0:15
 Speedup: 60

Challenges

 Static error detection
 Template shadowing
 False numeric polymorphism
 Partial evaluation
 Overflow coercion
 Restoring eval functionality

VI. Questions?

 Because it seemed like a good idea at the
time...

