Ups and Downs: Building a Digital Pitch Shifter

Michael Salib
November 17, 2001

Contents
1 Overview 1
2 Description 2
2.1 Synchronizer 2
2.2 Timing Unit00 2
2.3 Storage Unit 2
2.4 Signal Accumulator 2
2.5 Microprogrammed Control Unit 2
2.5.1 Imstruction Format 3
2.5.2 MCU Programs 3
2.6 MCU Implementation Techniques 3
3 Testing and Debugging 3
A VHDL Source Code Listings 3
A.1 Toplevel Source 3
A2 MCU . .o 7
A3 Timing Unit 9
A4 Synchronizer 10
A5 Storage Unit 11
A.6 Signal Accumulator 14
A7 MCU ROM e 15
B Assembler Source Code Listings 17
B.1 MCU Specification 17
B.2 MCU Assembly Code 18
B.3 MCU Audio Test Assembly Code 22
C VHDL ROM Tools Code Listings 23
C.1 Assmebler to VHDL ROM Converter 23
C.2 Assembler to Finite State Machine Converter 24
C.3 VHDL Template used for Assembler to FSM Conversion 27

1 Overview

I designed and implemented a digital pitch shifter (DPS). This device produces an output
audio signal that is a higher or lower pitched version of the input audio signal. The amount
of shifting is adjustable by the user. The device can output an exact copy of the input
signal, a shifted version, or a combination of the shifted version and the original signal. The
combination mode can be used to produce interesting audio effects.

The DPS works by digitizing the input audio signal and manipulating it in the digitial
domain. The DPS converts the digital pitch shifted beck into the analog domain before
outputting it. Shifting is accomplished by stepping through a list of samples of the digitzied
input. By adjusting the fractional step size, we can change the rate at which samples of
the input signal are played back. For step values less than one, this process corresponds to
stretching the signal in time, or decreasing the pitch. For step values greater than one, this
process corresponds to compressing the signal in time, which is equivalent to increasing the
pitch.

Although this pitch shifting algorithm is simple to implement, that simplicity comes at
the cost of reduced output quality. Because the DPS must work in real time, it does not have
access to the entirety of the input signal. Consequently, it uses buffers to store small pieces of
the input signal. When stepping past the end of a chunk (which always happens for stepping
values greater than one), the DPS wraps around to the beggining of the chunk. The effect of
this algorithm is to fill the empty space created by compressing a piece of the signal in time
with copies of itself. As a result of this copying, the quality of the shifted signal is greatly
reduced. However, these effects are negligible compared to the quality degradation associated
with sampling the input signal at low rates using low precision sampling techniques.

The DPS design I describe here makes use of an analog to digital converter (ADC) and
digital to analog converter (DAC) that operate with 8 bits of data per sample. In addition,
it uses a 64 kilobyte RAM for storing input and output data chunks. The remainder of
the system consists of componants I designed and then implemented using complex pro-
grammable logic devices programmed in VHDL. These componants include modules that
synchronize external inputs, generate appropriate audio timing signals, and accumulate the
input and shifted signals. Finally, I designed and implemented a microprogrammed control
unit (MCU) to manage control and status signals from the other componants along with
MCU programs for testing and running the DPS. The resulting system works properly and
meets all of its specifications.

In the course of implementing the DPS, I created a set of software tools to convert
MCU assembler programs into a form more amenable to CPLD synthesis. The first program
converts ROM images into VHDL source files, allowing easy embedding of program code
into an MCU implemented in a CPLD. This approach was what I actually used during the
construction of the DPS. The second program converts MCU assembler programs into finite
state machines implemented entirely in VHDL. The use of these tools greatly simplified the
consturction process.

2 Description

The DPS consists of several componants connected with a shared eight bit data bus. These
include the DAC, the ADC, the storage unit, and the signal accumulator. In addition, the
DPS also makes use of an MCU to control the other componants and arbitrate who should
be reading from or writing to the shared bus at any time.

2.1 Synchronizer

The synchronizer simply synchronizes user inputs to ensure the system only sees user input
that does not transition during system clock changes. This prevents metastable situations.
The synchronizer also converts the pitch up and down inputs from levels into pulses. That
ensures that when the user presses on the pitch up or pitch down button, the system sees
only one pulse on that input line.

2.2 Timing Unit

The Timing Unit simply divides down the system clock of 1.8432 MHz to either 9600 Hz
or 19.2 kHz depending on the synchronized frequency selection input set by the user. It
consists of a simple counter whose initial value depends on the frequency selected.

2.3 Storage Unit

The storage unit is the most complex componants of the system. It provides the addressing
needed by the RAM. It maintains two seperate counters for RAM addresses; one is used for
sampling input audio signals while the other is used for shifting through chunks of previously
sampled data in preperation for output.

2.4 Signal Accumulator

The signal accumulator simply combines pairs of samples as directed by the MCU. Because
these samples are both 8 bits wide and the output must also be 8 bits wide, the input data
is shifted right by one bit when adding two signals together. This corresponds to taking the
average of the two signals rather than their direct sum.

2.5 Microprogrammed Control Unit

The MCU is the heart of the system. It consists of a 16 bit ROM whose address is sourced
by either an address counter or a portion of the previous ROM output depending on the
results of a condition selector. This selector is used to support conditional and unconditional
branches.

2.5.1 Instruction Format

I used the suggested instruction format. The only changes I made were in choosing my own
conditional jump inputs and assertion signals. It is located in Appendix B.1.

2.5.2 MCU Programs

I wrote two main MCU programs. The first was a test program used to determine if the
system could sample audio input data and play the sample back immediately without further
processing. The source code for this program is located in Appendix B.3.

The second program was used for actually running the system. It is available in Appendix
B.2.

2.6 MCU Implementation Techniques

To avoid excessive wiring, I decided to implement my MCU in a CPLD. However, the CPLDs
in the lab kit don’t have enough free 1O pins to support both the ROM data and address
inputs in addition to the other IO needed to implement the DPS. The solution I came up
with was to write a small compiler that would compile the output of the assembler into
VHDL source. That way, instead of burning my assembler code into a ROM, I could burn it
into a CPLD. This MCU implementation is exactly like the one described in the lab handout;
the only difference is that the ROM is implemented in VHDL.

I developed two compilers. The first one, compileToCPLD, is what I used for this lab.
The second one, asm2fsm, is a more ambitious experimental project. Instead of converting
assembler output into a VHDL ROM, it converts assembler output into a Finite State Ma-
chine written in VHDL. In theory, this should give the synthesis tools much more leeway
to optimize the resulting system since the VHDL compiler can make state assignements in
an optimal fashion. In practice, this compiler produced VHDL code that compiled to much
more resource hungry designs.

3 Testing and Debugging

B.3 I grealy simplified debugging by reducing the wiring effort needed with my alternative
MCU implementation. The debugging I did perform was largely composed of watching
program adderss and contol signals on the logic analyzer. Besides the expected minor bugs,
I did have serious problems with bus contention and RAM addressing. Specifically, I had
difficulty keeping RAM address lines stable during multiple consecutive writes.

A VHDL Source Code Listings

A.1 Toplevel Source

-- note: the sampling_ frequency_select listed here does nothing

library ieee;

use
use

use
use
use
use
use

ieee.std_logic_1164.all;
ieee.numeric_std.all;

work.storageUnit;
work.synchronizer;
work.signalAccumulator;
work.mcu;
work.timingUnit2;

entity cpld is

port (
-— synchronizer inputs
clkx, a_pitch_up, a_pitch_down : in std_logic;
a_pass_shifted, a_pass_original : in std_logic;
a_not_reset : in std_logic;
a_buffer_size : in unsigned(3 downto 0);

—-- to and from the MCU that now lives here
adc_not_ready, freq_selectx : in std_logic;
ram_oe, ram_we, adc_enable, adc_sample, dac_enable : out std_logic;

-- storage unit control inputs
st_count, st_clear_samp, st_clear_shift : in std_logic;
st_swap_buf, st_shift_buf, st_shift_count : in std_logic;
-- accumulator control inputs

- sa_loadadd, sa_clear, sa_oe : in std_logic;
—— outputs
-- fullx, pass_originalx, pass_shiftedx : out std_logic;
data_bus : inout unsigned(7 downto 0);
ram_addressx : out unsigned(11 downto 0));
attribute pin_avoid of cpld : entity is
"11 21 22 32 42 43 44 53 63 64 74 83"& -- Vdd, Gnd, VPP
" 13 "& -- This is I0-9. Can screw up the clock of Cl. Be
-- careful when using this.
" 23 62 65 "&
--" 71 "& --must be grounded for K1 interface

-- this line lists all the logic analyzer connections...
--"34567 89 10 15 16 17 18 67 68 69 70 71 75 76 77 78 79 80 81 82"&

" 14 35 41 51 72 "; -- Used by Programmer. No external connection.

attribute pin_numbers of cpld :entity is

—— first buf_size and ram_addresses
"a_buffer_size(0):24 a_buffer_size(1):25 "&
"a_buffer_size(2):26 a_buffer_size(3):27 "&
"ram_addressx(0) :28 ram_addressx(1):29 ram_addressx(2):30 ram_addressx(3):31 "&
"ram_addressx(4) :33 ram_addressx(5) :34 ram_addressx(6):36 ram_addressx(7):37 "&
"ram_addressx(8) :38 ram_addressx(9) :39 ram_addressx(10):40 ram_addressx(11):45 "&
-- now storage unit control inputs and status output
--"st_count:3 st_clear_samp:4 st_clear_shift:5 st_swap_buf:6 "&
-—"st_shift_buf:7 st_shift_count:8 fullx:9 "&
—-- finally, asynchronous inputs (a_not_reset is in a funny place)
"a_pitch_up:46 a_pitch_down:47 a_pass_shifted:48 a_pass_original:49 "&
"a_not_reset:52 "&
—--"sa_loadadd:57 sa_clear:55 sa_oe:56 "&
--"pass_shiftedx:60 pass_originalx:61 " &
"data_bus(0):75 data_bus(1):76 data_bus(2):77 data_bus(3):78 "&
"data_bus(4):79 data_bus(5):80 data_bus(6):81 data_bus(7):82 "&
"adc_not_ready:55 adc_enable:56 adc_sample:57 dac_enable:60 "&
"ram_oe:66 ram_we:54 freq_selectx:61";

end cpld;

architecture x of cpld is
signal not_resetx, pitch_upx, pitch_downx, resetx : std_logic;
signal pass_shiftedx, pass_originalx, fullx : std_logic;
signal buffer_sizex : unsigned(3 downto 0);
signal foo : unsigned(11l downto 0);

signal st_count, st_clear_samp, st_clear_shift : std_logic;
signal st_swap_buf, st_shift_buf, st_shift_count : std_logic;
signal sa_loadadd, sa_clear, sa_oe : std_logic;

signal timing_sample : std_logic;
begin - x

resetx <= not(not_resetx);

mcu_in_a_box : mcu port map (
clk => clkx,
reset => resetx,
st_full => fullx,
adc_not_ready => adc_not_ready, -—from adc
timing_sample => timing_sample, -—from timing unit outside
pass_shifted => pass_shiftedx,
pass_original => pass_originalx,

ram_oe => ram_oe, -- to outside

ram_we => ram_we, -- to outside
adc_enable => adc_enable, -- to outside
adc_sample => adc_sample, -- to outside
dac_enable => dac_enable, -- to outside

st_count => st_count,
st_clear_samp => st_clear_samp,
st_clear_shift => st_clear_shift,
st_swap_buf => st_swap_buf,
st_shift_buf => st_shift_buf,
st_shift_count => st_shift_count,
sa_loadadd => sa_loadadd,
sa_clear => sa_clear,

sa_oe => sa_oe);

tu2 : timingUnit2 port map (

clk => clkx,
freq_select => freq_selectx,
sampling => timing_sample) ;

su : storageUnit port map (
clk => clkx,
not_reset => not_resetx,
pitch_up => pitch_upx,
pitch_down => pitch_downx,
count => st_count,
clear_samp => st_clear_samp,
clear_shift => st_clear_shift,
swap_buf => st_swap_buf,
shift_buf => st_shift_buf,
shift_count => st_shift_count,
buffer_size => buffer_sizex,
full => fullx,
ram_address => ram_addressx) ;

sync : synchronizer port map (

clk => clkx,

a_pitch_up => a_pitch_up,
a_pitch_down => a_pitch_down,
a_pass_shifted => a_pass_shifted,
a_pass_original => a_pass_original,
a_not_reset => a_not_reset,
a_buffer_size => a_buffer_size,

pitch_up =>
pitch_down =>
pass_shifted =>
pass_original =>
not_reset =>
buffer_size =>

pitch_upx,
pitch_downx,
pass_shiftedx,
pass_originalx,
not_resetx,
buffer_sizex);

sigacc : signalAccumulator port map (

clk => clkx,
sa_loadadd => sa_loadadd,
sa_clear => sa_clear,
sa_oe => sa_oe,
data_bus => data_bus);
end x;
A.2 MCU

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.cpldROM;

entity mcu is
port (
clk, reset
st_full, adc_not_ready,

timing_sample

pass_shifted, pass_original

-— inverted outputs

in std_logic;
in std_logic;
in std_logic;

ram_oe, ram_we, adc_enable, adc_sample, dac_enable : out std_logic;

-- non inverted outputs

st_count, st_clear_samp, st_clear_shift, st_swap_buf : out std_logic;
st_shift_buf, st_shift_count, sa_loadadd, sa_clear, sa_oe : out std_logic);

end mcu;

architecture x of mcu is

signal currentAddress, nextAddress, jmp_address

signal ROMdata

signal mcu_assert, jmp_or_not

: unsigned(7 downto 0);
: unsigned(15 downto 0);

std_logic;

signal condition_selector

—-— assertions from the PROM

signal clrleds, 10, 11, 12, 13, 14, 15, 16, 17
begin -- x

clk_proc: process(clk)

begin -- process
if rising_edge(clk) then
if reset = ’1’ then
currentAddress <= "00000000";
else
currentAddress <= nextAddress;
end if;
end if;

end process;

rom : cpldROM port map (
address => currentAddress,
data => ROMdata) ;

mcu_assert <= ROMdata(15);
condition_selector <= ROMdata(14 downto 12);
jmp_address <= ROMdata(7 downto 0);

with condition_selector select
jmp_or_not <=
st_full when "000",

adc_not_ready when "001",
timing sample when "010",
pass_shifted when "O11",
pass_original when "100",

’1’ when others;

: unsigned(2 downto 0);

std_logic;

comb: process(mcu_assert, jmp_or_not, currentAddress, jmp_address)

begin
if mcu_assert = ’0’ then
if jmp_or_not = ’1’ then
nextAddress <= jmp_address;

else
nextAddress <= currentAddress + 1;
end if;
else
nextAddress <= currentAddress + 1;
end if;

end process;

ff: process(clk)
begin
if rising_edge(clk) then
if mcu_assert = ’1’ then
ram_oe <= not(ROMdata(0));
ram_we <= not(ROMdata(1));
adc_enable <= not(ROMdata(2));
adc_sample <= not(ROMdata(3));
dac_enable <= not(ROMdata(4));

st_count <= ROMdata(5);
st_clear_samp <= ROMdata(6);
st_clear_shift <= ROMdata(7);
st_swap_buf <= ROMdata(8);
st_shift_buf <= ROMdata(9);
st_shift_count <= ROMdata(10);
sa_loadadd <= ROMdata(1l1l);
sa_clear <= ROMdata(12);
sa_oe <= ROMdata(13);
end if;
end if;
end process ff;

end x;

A.3 Timing Unit

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity timingUnit2 is

port (
clk, freq_select : in std_logic;
sampling : out std_logic);

end timingUnit2;

-- 96 = 1100000

-- 192 = 11000000

architecture x of timingUnit2 is

signal count, starting_count_value

begin - x

: unsigned(7 downto 0);

starting_count_value <= "01100000" when freq_select = ’0’
else "11000000";

countdown: process(clk, count, starting_count_value)

begin
if rising_edge(clk) then

if count = "00000000" then

count <= starting_count_value;

sampling <= ’1’;
else
count <= count - 1;
sampling <= ’0’;
end if;
end if;
end process countdown;

end x;

A.4 Synchronizer

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

-- this should not go in the MCU CPLD. If it does,

-— 1t needs a clk enable input.

entity synchronizer is
port (

-- a_foo means the asynchronous version of

pitch_up, pitch_down
pass_shifted, pass_original

not_reset : out std_logic;

buffer_size

clk, a_pitch_up, a_pitch_down
a_pass_shifted, a_pass_original

a_not_reset : in std_logic;
a_buffer_size

10

. out
. out

. out
in

in

in

foo
std_logic;
std_logic;

unsigned (3 downto 0);
std_logic;
std_logic;

unsigned(3 downto 0));

end synchronizer;

architecture x of synchronizer is
signal u, v, x, y : std_logic;

begin - x
sync: process(clk)
begin

if rising_edge(clk) then
-- synchronize these signals
pass_original <= a_pass_original;
pass_shifted <= a_pass_shifted;
not_reset <= a_not_reset;
--sampling_frequency_select <= a_sampling_frequency_select;
buffer_size <= a_buffer_size;

-- pulsify a_pitch_up/down
u <= a_pitch_up;
v <= u;

x <= a_pitch_down;
y <= Xx;
end if;
end process sync;

pitch_up <= not(v) and u;
pitch_down <= not(y) and x;

end x;

A.5 Storage Unit

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity storageUnit is

port (
clk, not_reset : in std_logic;
pitch_up, pitch_down : in std_logic;
clear_shift, clear_samp, count : in std_logic;
shift_buf, shift_count, swap_buf : in std_logic;
buffer_size : in unsigned(3 downto 0);
full : out std_logic;
pitch_multiplier_out : out unsigned(4 downto 0);

11

ram_address : out unsigned(11 downto 0));
end storageUnit;

architecture x of storageUnit is

signal buf_sel, internal_full : std_logic;

signal pitch_multiplier : unsigned(4 downto 0);

signal internal_ram_address : unsigned(10 downto 0);

—-- counters

signal sampling_counter : unsigned(10 downto 0);

signal shift_counter, extended_pitch_multiplier : unsigned(16 downto 0);
begin - x

pitch_multiplier_out <= pitch_multiplier(4 downto 0);

pitch_mult: process(clk, pitch_up, pitch_down, not_reset)

begin
if rising_edge(clk) then
if not_reset = ’0’ then
pitch_multiplier <= "01000"; -- default value of one

elsif pitch_up = ’1’ then
pitch_multiplier <= pitch_multiplier + 1;

elsif pitch_down = ’1’ then
pitch_multiplier <= pitch_multiplier - 1;

else
pitch_multiplier <= pitch_multiplier;

end if;

end if;
end process pitch_mult;

samplingCounter: process(clk)

begin
if rising_edge(clk) then
if clear_samp = ’1’ then
sampling_counter <= "00000000000";
elsif count = ’1’ then
sampling_counter <= sampling_counter + 1;
else
sampling_counter <= sampling_counter;
end if;
end if;

end process samplingCounter;

extended_pitch_multiplier <= "000000000" & pitch_multiplier & "0O0O0";
shiftingCounter: process(clk)

12

begin
if rising_edge(clk) then

if clear_shift = ’1’ then
shift_counter <= "00000000000000000";
elsif count = ’1’ then
shift_counter <= shift_counter + extended_pitch_multiplier;
else
shift_counter <= shift_counter;
end if;
end if;

end process shiftingCounter;
internal_ram_address <= sampling_counter when shift_count = ’0’
else shift_counter(16 downto 6);
ram_address(10 downto 0) <= internal_ram_address;
ram_address(11) <= shift_buf xor buf_sel;

tflipflop: process(clk)
begin
if rising_edge(clk) then
if swap_buf = ’1’ then
buf_sel <= not(buf_sel);
end if;
end if;
end process tflipflop;

—— full detector
fulldet : process(clk)
begin
if rising_edge(clk) then
—--full <= internal_full;
if ((internal_ram_address(10 downto 7) = buffer_size)
and (internal_ram_address(6 downto 0) = "1111111")) then

full <= ’17;
else
full <= ’07;
end if;
end if;

end process fulldet;

- internal_full <=’1’ when ((internal_ram_address(10 downto 7) = buffer_size)
- and internal_ram_address(6 downto 0) = "0000000") --"1111111")

- else ’0’;

13

end Xx;

A.6 Signal Accumulator

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity signalAccumulator is

port (
clk :in std_logic;
sa_loadadd, sa_clear, sa_oe : in std_logic;
data_bus : inout unsigned(7 downto 0));

end signalAccumulator;

architecture x of signalAccumulator is
signal data, data_out, half_data_bus, half_data : unsigned(7 downto 0);
begin - x
half_data_bus <= ’0’ & data_bus(7 downto 1);
half_data <= 0’ & data(7 downto 1);
accum : process(clk)
begin
if rising_edge(clk) then
if sa_clear = ’1’ then
data <= "00000000";
elsif sa_loadadd = ’1’ then
data <= data + half_data_bus;
else
data <= data;
end if;
end if;
end process accum;

output : process(clk, sa_oe, data)

begin
if sa_oe = ’1’ then
data_bus <= data;
else
data_bus <= (others => ’Z’);
end if;
end process output;
end x;

14

A7 MCU ROM

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity cpldROM is

port (
address : in unsigned(7 downto 0);
data : out unsigned(15 downto 0));

end cpldROM;

architecture x of cpldROM is
begin -- x

with address select
data <=
X"8000" when X"OO",
X"90c0" when X"O1",
X"90c0" when X"02",
X"90c0" when X"03",
X"8000" when X"04",
X"8000" when X"O5",
X"8000" when X"06",
X"2009" when X"O7",
X"7007" when X"08",
X"8000" when X"09",
X"900c" when X"Oa",
X"8004" when X"Ob",
X"100c" when X"Oc",
X"8004" when X"O0d",
X"8007" when X"Oe",
X"8807" when X"Of",
X"8004" when X"10",
X"8000" when X"11",
X"8000" when X"12",
X"3015" when X"13",
X"701c" when X"14",
X"4022" when X"15",
X"8600" when X"16",
X"8600" when X"17",

15

X"8601" when X"18",
X"8601" when X"19",
X"8611" when X"1a",
X"702c¢c" when X"1b",
X"8000" when X"1c",
X"8000" when X"14",
X"8001" when X"le",
X"8001" when X"1f",
X"8011" when X"20",
X"702c" when X"21",
X"8600" when X"22",
X"8600" when X"23",
X"8601" when X"24",
X"8601" when X"25",
X"8e01" when X"26",
X"8000" when X"27",
X"8000" when X"28",
X"a010" when X"29",
X"a000" when X"2a",
X"8000" when X"2b",
X"8020" when X"2c",
X"8000" when X"24",
X"0030" when X"2e",
X"7037" when X"2f",
X"81c0" when X"30",
X"81c0" when X"31",
X"81c0" when X"32",
X"80c0" when X"33",
X"80c0" when X"34",
X"8000" when X"35",
X"7037" when X"36",
X"8000" when X"37",
X"8400" when X"38",
X"8400" when X"39",
X"8400" when X"3a",
X"8400" when X"3Db",
X"003e" when X"3c",
X"703f" when X"3d",
X"8080" when X"3e",
X"8000" when X"3f",
X"8000" when X"40",
X"7007" when X"41",

" when others;

16

end Xx;

B Assembler Source Code Listings

B.1 MCU Specification

/* mcutest.sp */
/* assembler spec for debugging and testing of 163-based MCU */
/* created 2-26-98 */
/* (adapted from mcu.sp for AM29C10A-based MCU) */

/**/

/* Instruction Word Organization: */
/* conditional branches OcccxxxxX aaaaaaaa */
/* unconditional branches 0111xxxx aaaaaaaa */
/* assertion statements 1sssssss ssssssss x/
/* where ¢ = status selection x/
/% a = alternative address, i.e. jump address */
/% s = assertion signals */

/**/

op <15:0>; /* Indicates the available bits */
address op <7:0>; /* Indicates bit locations for addresses */
value op <7:0>;

/%

* There is nothing magic about upper case.

* You may change things to lower case as you wish.

* Remember, the assembler maps all characters to lower case anyway!
*/
/*

* Instruction set for your MCU

*/

CJMP op<15>=%b0; /* Conditional JuMP */
JMP op<15:12>=%b0111; /* unconditional JuMP */
ASSERT op<15>=Ybl; /* unconditional ASSERT */

/* These are defined so that you may use them to make your code more
* readable. Their use is not required. */

17

IF nop;

THEN nop;

TRUE op<14:12>=Yb111; /* This causes the 151 to output true */
RESET op<15:0>=}%b0111000000000000;

/* Assertions */
ram_oe op<0>=1;

ram_we op<1>=1;
adc_enable op<2>=1;
adc_sample op<3>=1;
dac_enable op<4>=1;
st_count op=1;
st_clear_samp op<6>=1;
st_clear_shift op<7>=1;
st_swap_buf op<8>=1;
st_shift_buf op<9>=1;
st_shift_count op<10>=1;
sa_loadadd op<11>=1;
sa_clear op<12>=1;
sa_oe op<13>=1;

/*

* Status signals: Switches and frequency divider output 0SC

* Make sure that all status signals that change during mcu operation
* are synchronized to the system /CLK

*/

st_full op<14:12>=0;
adc_not_ready op<14:12>=1;
timing_sample op<14:12>=2;
pass_shifted op<14:12>=3;
pass_original op<14:12>=4;

B.2 MCU Assembly Code

/* mcutest.as */
/* assembler code for debugging and testing of 163-based MCU */
/* created 2-26-98 */
/* (inspired by mcu.as for AM29C10A-based MCU) */

18

SPEC_FILE

mcu.sp; /* This statement is required at the
beginning of the ASSEM_FILE. It tells
where the SPEC_FILE can be found. */

LIST_FILE

new_mcu.lst; /* This statement specifies the name for
the assembler listing file. If not
included, no listing will be created */

MASK_COUNT = 8; /* This statement is required to mask out 8
bits of the 16 bit op-code to produce 2 PROM
files. Use with the ’assem16to8’ command. */

SET_ADDRESS = O; /* This statement tells the program at what
address to start assembling. The address
given is a hexadecimal number. */

LOAD_ADDRESS = 100; /* This statement, if used AFTER the
SET_ADDRESS statement, determines the
beginning PROM address for the program
image. The address is in HEX. */

REAL_START:

assert ;

assert st_clear_shift st_clear_samp sa_clear;

assert st_clear_shift st_clear_samp sa_clear;

assert st_clear_shift st_clear_samp sa_clear;

assert ;

assert ;

assert ;

START: CJMP timing_sample SAMPLE_READY;
JMP START ;

SAMPLE_READY:

assert ;

assert adc_enable adc_sample sa_clear;
assert adc_enable ;

/* read from ADC and write it to sampling buffer */

ADC_WAIT:

CJMP adc_not_ready ADC_WAIT;

/* if we get to here, that means the ADC is ready to read from */
assert adc_enable;

/* adc_enable has been high since we’ve
been in a cjmp loop. we need to keep it

19

high in order to keep the adc writing to
the bus */

assert adc_enable ram_oe ram_we;

assert adc_enable ram_oe ram_we sa_loadadd;

assert adc_enable ; /* why? x/

assert ;

/* clear adc_enable so the adc stops writing to the bus */
assert ;

/* decide wheather we’re passing original, shifted, or both */
CJMP PASS_SHIFTED SHIFTED1;

JMP ORIGINAL ;

SHIFTED1:

CJMP PASS_ORIGINAL BOTH ;

/* we’re passing the shifted version only */

/* read sample from SHIFTING buffer and write to DAC */
assert st_shift_count st_shift_buf;

assert st_shift_count st_shift_buf;

assert ram_oe st_shift_count st_shift_buf ;

assert ram_oe st_shift_count st_shift_buf ;

assert ram_oe st_shift_count st_shift_buf dac_enable;
JMP COUNTER_INCREMENT ;

ORIGINAL:

/* we’re passing the original version only */

/* read sample from SAMPLING buffer and write to DAC */
assert ;

assert ;

assert ram_oe ;

assert ram_oe ;

assert ram_oe dac_enable;

JMP COUNTER_INCREMENT ;

BOTH:

/* we’re passing both original and shifted */

/* read sample from SHIFTING buffer and write to ACCUMULATOR */
assert st_shift_count st_shift_buf;

assert st_shift_count st_shift_buf;

assert ram_oe st_shift_count st_shift_buf ;

assert ram_oe st_shift_count st_shift_buf ;

assert ram_oe st_shift_count st_shift_buf sa_loadadd;

assert ;

assert ;

20

/* now write combined signal to DAC */
assert sa_oe dac_enable ;

assert sa_oe ;

assert ;

/* JMP COUNTER_INCREMENT ; x*/

COUNTER_INCREMENT:

/* increment both counters */

assert st_count ;

assert ;

/* check if sample counter is full x*/

CJMP st_full SAMP_BUF_FULL;

JMP SAMP_BUF_NOT_FULL ;

SAMP_BUF_FULL:

assert st_swap_buf st_clear_samp st_clear_shift;
assert st_swap_buf st_clear_samp st_clear_shift;
assert st_swap_buf st_clear_samp st_clear_shift;
assert st_clear_samp st_clear_shift;

assert st_clear_samp st_clear_shift;

assert ;

JMP SAMP_BUF_NOT_FULL ;

SAMP_BUF_NOT_FULL:

assert ;

/* check if shifting counter is full */

assert st_shift_count ;

assert st_shift_count ;

assert st_shift_count ;

assert st_shift_count ;

CJMP st_full SHIFT_COUNT_FULL

/* relies on having st_shift_count set in previous instruction */;

JMP SHIFT_COUNT_NOT_FULL;

SHIFT_COUNT_FULL:
assert st_clear_shift ;

SHIFT_COUNT_NOT_FULL:
assert ;

assert ;

JMP START ;

21

B.3 MCU Audio Test Assembly Code

/* mcutest.as */
/* assembler code for debugging and testing of 163-based MCU */
/* created 2-26-98 */
/* (inspired by mcu.as for AM29C10A-based MCU) */
SPEC_FILE = mcu.sp; /* This statement is required at the

beginning of the ASSEM_FILE. It tells
where the SPEC_FILE can be found. */

LIST_FILE = mcu_audio_test.lst; /* This statement specifies the name for
the assembler listing file. If not
included, no listing will be created */

MASK_COUNT = 8; /* This statement is required to mask out 8
bits of the 16 bit op-code to produce 2 PROM
files. Use with the ’assem16to8’ command. */

SET_ADDRESS = 0; /* This statement tells the program at what
address to start assembling. The address
given is a hexadecimal number. */

LOAD_ADDRESS = 100; /* This statement, if used AFTER the

SET_ADDRESS statement, determines the
beginning PROM address for the program
image. The address is in HEX. */

TST_START: assert ;

assert adc_enable adc_sample;

assert adc_enable ;

TST_ADC_WAIT:

CJMP adc_not_ready TST_ADC_WAIT;

/* if we get to here, that means the ADC is ready to read from */

assert adc_enable dac_enable; /* adc_enable has been high since we’ve
been in a cjmp loop. we need to keep it

high in order to keep the adc writing to

the bus */

assert ;

JMP TST_START ;

22

C VHDL ROM Tools Code Listings

C.1 Assmebler to VHDL ROM Converter

#!/usr/bin/env python
import sys, re, string

vhdlTemplate = """

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity cpldROM is 10
port (
address : in unsigned(7 downto 0);
data : out unsigned(15 downto 0));

end cpldROM;

architecture x of cpldROM is

begin -- x
20
with address select
data <=
%s
M " when others;

end X;
nnn

class assemblerFile:
headerRE = re.compile(r'\#\s* ([A-z_]+) \s*=\s*([A-z0-9]+)\s*\; ') 30

def __init__(self, fname):
f = open(fname, 'r')
self.loadFile(f)
f.close()

def loadFile(self, f):
codeLines = []
headerLines = []
for line in f.readlines(): 40
if line0] == '#":
headerLines.append(line)
else:
codeLines.append(int(line, 16))

for headerLine in headerLines:

key, val = self.headerRE.findall(headerLine)0]
setattr(self, key, int(val))

23

self.codeLines = codeLines 50

def compile(self):
resultList = []
startAddress = 0 #getattr(self, ’load_address’, 0)
load_address=100 means add 0x100 to all addresses, but we
interpret it to mean add decimal 100 to all addresses. . .
for index in range(len(self.codeLines)):
data = string.zfill(hex(self.codeLines[index])[2:], 4)
addr = string.zfill(hex(index + startAddress)[2:], 2)
resultList.append('\tX"%s" when X"%s",' % (data, addr)) 60
return vhdlTemplate % string.join(resultList, '\n"')

if __name__ == '__main__":
fname = sys.argv/[1]
a = assemblerFile(fname)

print a.compile()

C.2 Assembler to Finite State Machine Converter

#!/usr/bin/env python
import sys, re, string

vhdlTemplate = """

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity cpldROM is 10
port (
address : in unsigned(7 downto 0);
data : out unsigned(15 downto 0));

end cpldROM;

architecture x of cpldROM is

begin -- x
20
with address select
data <=
%s
X"0000" when others;

end X;
nmnn

24

fsm_template = open('vhdlTemplate.vhd', 'r').read()

assert_template = """
when state_%(state_num)s =>
next_state <= state_% (next_state_num)s;
outputs <= "% (assert_bits)s";
nmnn
jmp_template = """
when state_%(state_num)s =>
next_state <= state_’ (next_state_num)s;
outputs <= outputs;
nnn
cjmp_template = """
when state_%(state_num)s =>
outputs <= outputs;
if inputs(%(input_selector)s) = '1' then
next_state <= state_},(cjmp_state_num)s;
else
next_state <= state_Y% (next_state_num)s;

end if;
nnn

class assemblerFile:
headerRE = re.compile(r' \#\s* ([A-z_]+)\s*=\s*([A-20-9]+)\s*\; ')

def __init__(self, fname):
f = open(fname, 'r')
self.loadFile(f)
f.close()

def loadFile(self, f):
codeLines = []
headerLines = ||
for line in f.readlines():
if line[0] == '#":
headerLines.append(line)
else:
codeLines.append(int(line, 16))

for headerLine in headerLines:
key, val = self headerRE.findall(headerLine)|0]
setattr(self, key, int(val))

self.codeLines = codeLines

def compile(self):
resultList = []
startAddress = 0 #getattr(self, "load_address’, 0)
load_address=100 means add 0x100 to all addresses, but we
interpret it to mean add decimal 100 to all addresses. . .
for index in range(len(self.codeLines)):
data = string.zfill(hex(self.codeLines[index])[2:], 4)

25

addr = string.zfill(hex(index + startAddress)[2:], 2)
resultList.append('\tX"%s" when X"%s",' % (data, addr))
return vhdlTemplate % string.join(resultList, '\n"')

def compileFSM(self):
bits = map(bitString, self.codeLines)
fsm_lines =]
state_dict = {}
state_num_to_line_map = {}
next_state_dict = {} 90
for address in range(len(bits)):
instruction = bits[address]
state_dict[address] = 1
fsm_vhdl_line = self.generateFSMvhdlLine(instruction, address, state_dict, next_state_dict)
state_num_to_line_map|address] = fsm_vhdl_line
#fsm_lines.append(fsm_vhdl_line)

for state_num, fsm_line in state_num_to_line_map.items():
if next_state_dict.has_key(state_num):
fsm_lines.append(fsm_line) 100

state_list = []
for num in state_dict.keys():
if next_state_dict.has_key(num):
state_list.append('state_%i' % num)
state_list.sort()
state_str = string.join(state_list, ', ')

return fsm_template % {'cases': string.join(fsm_lines, ''), 110
'state_list': state_str}

def generateFSMvhdlLine(self, instruction, address, state_dict, next_state_dict):
mcu_assert = instruction|[—1]
state_num = address
if mcu_assert == '1":
we’re asserting
next_state_num = address + 1 # since we’re not jumping,
just go to the next instruction
assert_bits = instruction[:—1] 120
we’re going to output the asserts
in this instruction
next_state_dict[next_state_num] = 1
return assert_template % {'state_num': state_num,
'next_state_num': next_state_num,
'assert_bits': assert_bits}
else:
we’re jumping
selector = instruction[—4:—1]
130
if selector == '111"':
its a jmp, an unconditional branch
next_state_num = int(instruction[:8], 2)

26

state_dict[next_state_num| = 1

next_state_dict[next_state_num] = 1

return jmp_template % {'state_num': state_num,
'next_state_num': next_state_num}

else:

this is a cjmp, a conditional branch

next_state_num = address + 1 140

cjmp_state_num = int(instruction][:8], 2)

next_state_dict[next_state_num| = 1

next_state_dict{cjmp_state_num]

state_dict[cjmp_state_num] = 1

input_selector = int(selector, 2)

return cjmp_template % {'state_num': state_num,
'next_state_num': next_state_num,
'cjmp_state_num': cjmp-_state_num,
'"input_selector': input_selector}

150

def bitString(integer):
bitList = []
for i in range(16):
bitList.append((integer >> i) & 1)
strList = map(str, bitList)
#strList.reverse()
return string.join(strList, '')
'__main__"': 160

if __name__ == "'_
fname = sys.argvl[l]
a = assemblerFile(fname)
print a.compileFSM()
#print a.compile()
#for © in map(bitString, range(70)): print

C.3 VHDL Template used for Assembler to FSM Conversion

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity mcu_fsm is

port (
clk, reset : in std_logic;
inputs : in std_logic_vector(7 downto 0);

assert_outputs : out std_logic_vector(14 downto 0));
end mcu_fsm;

architecture python of mcu_fsm is

27

type stateType is (% (state_list)s);

signal present_state, next_state : stateType;

signal outputs : std_logic_vector(14 downto 0);
begin -- python

assert_outputs <= outputs;

state_clk: process(clk)

begin
if rising_edge(clk) then
if reset = ’1’ then
present_state <= state_0;
else
present_state <= next_state;
end if;
end if;

end process state_clk;
state_comb: process(present_state, inputs, outputs)
begin

case present_state is
%h(cases)s

when others =>
null; --next_state <= start;

end case;
end process state_comb;

end python;

28

